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ABSTRACT 

Weather and climate disasters pose an increasing risk to life and property in the United States. 

Managing this risk requires objective information about the nature of the threat and subjective 

information about how people perceive it. Meteorologists and climatologists have a relatively firm 

grasp of the historical objective risk. For example, we know which parts of the US are most likely 

to experience drought, heat waves, flooding, snow or ice storms, tornadoes, and hurricanes. We 

know less about the geographic distribution of the perceived risks of meteorological events and 

trends. Do subjective perceptions align with exposure to weather risks? This question is difficult 

to answer because analysts have yet to develop a comprehensive and spatially consistent 

methodology for measuring risk perceptions across geographic areas in the US. In this project, we 

propose a methodology that uses multilevel regression and poststratification (MRP) to estimate 

extreme weather and climate risk perceptions by geographic area (i.e., region, state, forecast area, 

county). Then we apply the methodology using data from three national surveys (n = 9,542). This 

enables us to measure, map, and compare perceptions of risk from multiple weather hazards in 

geographic areas across the country. 

KEY WORDS: Extreme weather, risk perceptions, geography 

Social Media Summary: 

Do risk perceptions of natural hazards (tornadoes, hurricanes, etc.) correlate with hazard 

frequency? Often, the answer is yes! See how we answer this question with data from large 

national surveys. 
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1. INTRODUCTION 

Weather and climate disasters pose an increasing risk to life and property in the United States. 

In 2017, there were 16 weather and climate disasters with losses exceeding $1 billion each, 

including three tropical cyclones, three severe thunderstorms, three tornadoes, two hail storms, 

two inland floods, a crop freeze, a drought and two wildfires. The cumulative cost of these events 

was $309.5 billion, the most in US history (Smith, 2018). Reducing these costs and managing risk 

requires both objective information about the nature of the threat and subjective information about 

the risk perceptions of the diverse individuals affected by these threats. To improve hazard 

communication (e.g., forecasts) and decision support, those who are responsible for 

communicating information about the risks of extreme weather and climate disasters (e.g., 

emergency managers, broadcast meteorologists, warning forecast office meteorologists) need to 

understand how people think about and respond to risk. 

Meteorologists and climatologists collect and compile data on the frequency and severity of 

extreme weather and climate hazards across the US (NOAA, 2019; National Drought Mitigation 

Center, 2019). As such, researchers have robust knowledge about the geographic distribution of 

objective risk from different weather and climate hazards across the country. By comparison, less 

is known about the geographic distribution of risk perceptions across weather hazards. This project 

is focused on understanding how risk perceptions vary geographically, irrespective of a single 

event, and the extent to which risk perceptions align with hazard exposure. 

Using an all-hazards approach, we investigate the hazard exposure vs. risk perception 

relationship across eight different hazards in 115 geographic regions. This investigation allows us 

to statistically identify exposure-perception “gaps” across communities and hazards which could 

indicate vulnerability. In some cases risk perceptions may be low in comparison to exposure. This 
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may indicate that these communities do not fully recognize the hazards they may see in the future. 

Alternatively, risk perceptions could be high in comparison to exposure. This may indicate that 

communities are overpreparing for some hazards at the possible risk of underpreparing for others. 

In both cases, one can imagine the value of local risk communication and education strategies that 

focus on closing these gaps in potentially vulnerable communities. 

In addition to data about possible vulnerabilities across communities, investigation of the 

exposure-perception relationship across hazards provides valuable information about (i) the 

hazards that people perceive and worry about and (ii) the hazards that are historically present, but 

seem less notable. Extreme heat is one such example where past research indicates that exposure 

is relatively high in many places that tend to have low risk perceptions (Howe et al., 2019). A 

relatively low correlation between exposure to and perception of extreme heat may be an indicator 

of vulnerability that is applicable across communities. Recognizing this low correlation may help 

national organizations such as the Federal Emergency Management Agency and the National 

Weather Service (NWS) develop strategic risk communication and education campaigns to help 

people perceive hazards that they might otherwise overlook. 

Furthermore, by measuring risk perceptions across the contiguous US, we can begin to address 

important questions: Do concerns about natural hazards vary systematically across the country? 

Do these risk perceptions align with objective indicators of exposure, such as those collected by 

the National Oceanic and Atmospheric Administration (NOAA)? Do individual risk perceptions 

correlate more strongly with risk exposure to certain hazards and not others? If so, which ones? 

Do these perceptions influence risk communication? These questions are difficult to answer 

because there is not yet a comprehensive and spatially consistent methodology for measuring risk 
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perceptions across geographic areas in the US. This paper uses data from ongoing national surveys 

where we apply a novel methodology in survey research to fill this gap. 

1.1 Weather and Climate Hazard Risk Perceptions 

Risk perceptions represent intuitive judgments about the probability of a given risk (event) and 

concern about the consequences of that risk (event) if it were to manfiest (Slovic, 1987; Sjöberg, 

Moen, & Rundmo, 2004). Both theory and research indicate that risk perceptions are among the 

most important drivers of protective action in response to a wide variety of weather and climate 

hazards (Burnside, Miller, & Rivera, 2007; Dow & Cutter, 2000; Lindell, Arlikatti, & Prater, 

2009; Lindell & Perry, 2012; Mileti & O’Brien, 1992; Mileti & Sorensen, 1990; Murphy et al., 

2009; Rüstemli & Karanci, 1999; Ramasubramanian et al., 2019; Whitmarsh, 2008). As such, “best 

practice” guides to risk communication in specific communities often begin by emphasizing the 

importance of understanding risk perceptions (e.g., Perry & Lindell, 2003). 

Differences among individuals within communities strongly influence weather and climate 

hazard risk perceptions. For example, research consistently shows that white men often view 

hazards as less risky than their female and minority counterparts (Flynn, Slovic, & Mertz, 1994). 

Age can influence risk perceptions as well, but the direction of the relationship is less consistent 

across hazards (Wachinger et al., 2013). For some hazards, risk perceptions seem to increase with 

age (Kellens et al., 2011); for others, there is no meaningful relationship (Plapp & Werner, 2006; 

Siegrist & Gutscher, 2006). These differences are likely driven by multiple mechanisms including 

variable access to resources, trust in authority, and worldviews (Kahan et al., 2007; Kahan, 

Jenkins-Smith, & Braman, 2011; Siegrist & Cvetkovich, 2000; Siegrist, 2019). 

In addition to differences among individuals within communities, differences between 

communities can also influence risk perceptions. For example, a long line of research suggests that 
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some communities develop “subcultures” through collective experiences that influence the ways 

in which people in a given community perceive and respond to disasters (Anderson, 1965; Sims 

& Baumann, 1972; Weller & Wenger, 1973; Granot, 1996; Engel et al., 2014; Bankoff, 2017). In 

addition to subcultures, differences in community sensitivity and exposure can perpetuate variation 

in risk perceptions between communities. Sensitivity indicates the extent to which demographic 

attributes, infrastructure, or other structures in a community generate vulnerabilities that 

predispose the community to loss during disasters (Cutter, Boruff, & Shirley, 2003). Exposure, by 

comparison, indicates the frequency with which humans in a given area come into contact with 

hazards, both historicially, and in the future (Burton, Kates, & White, 1993). Geography often 

influences exposure because many hazards are more (or less) common in given climates and 

landscapes. Exposure contributes to the probability side of the objective risk equation, whereas 

sensitivity contributes to the consequences side of the equation. 

Previous research indicates a somewhat tenuous relationship between exposure and risk 

perception in the weather and climate domains. A few studies in specific communities indicate a 

modest relationship between flood risk perceptions related to exposure (Siegrist & Gutscher, 2006; 

Horney et al, 2010; Siebeneck & Cova, 2012; O’Neill et al., 2016; Royal & Walls, 2019). Other 

studies in different communities indicate little or no association between flood exposure and 

perceptions (Wallace, Poole, & Horney, 2016; Tanner & Arvai, 2018). While informative, these 

studies of the relationship between exposure and perceptions are subject to a variety of limitations. 

Most notably, most of the research in this area focuses on flooding, so we know relatively little 

about the connection between exposure and perceptions to other weather and climate hazards (but 

see Champ & Brenkert-Smith, 2016). Additionally, much of the research in the area focuses on 

people in specific communities, which limits the generalizability of the findings. A recent study 
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by Howe and colleagues (2019) represents a notable exception to these limitations. It investigates 

the geographic distribution of heat risk perceptions in communities across the US, finding that 

subjective perceptions of health risks from extreme heat exhibit strong geographic patterns that 

relate to, but do not directly overlap with, extreme heat exposure. 

The present study builds upon Howe et al. (2019) to measure and map public perceptions of 

risk from eight different extreme weather and climate hazards—extreme heat, drought, extreme 

cold, extreme snow (or ice), tornadoes, floods, hurricanes, and wildfires. The data and maps 

provided are publicly available1 and the geographic relationships they depict will help risk 

communicators (e.g., forecasters, broadcast meteorologists, emergency managers) develop 

messaging strategies and education initiatives that are specific to the communities they serve. In 

addition, the data and maps facilitate academic research into the variety of factors explaining 

community perceptions of risk. To demonstrate this point, the analysis examines the relationship 

between hazard exposure and risk perceptions across hazards in the US. 

2. METHODS 

2.1. Data 

2.1.1. Estimation Survey Data 

The data we use to estimate subjective risk perceptions across geographic areas come from a 

national survey that is conducted annually by the Center for Risk and Crisis Management at the 

University of Oklahoma. This survey, called the Severe Weather and Society Survey, measures 

weather and climate risk perceptions and information reception, comprehension, and response 

1 For data access and interactive maps, see https://crcm.shinyapps.io/WxDash/. 

https://crcm.shinyapps.io/WxDash
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across extreme weather and climate hazards. This analysis uses data from the 2017, 2018, and 

2019 surveys (n = 2,003, 2,998, & 2,998, respectively). All surveys were implemented online to 

samples of adults (age 18+) that reside in the Contiguous US (CONUS). The samples were 

provided by Qualtrics, which uses quota sampling from opt-in panels based on demographic 

characteristics. While there is some debate in the literature about which sampling method is best, 

research suggests that the results from opt-in panels and probability samples are relatively 

comparable (Baker et al., 2013; Berrens et al., 2003; Chang & Krosnick, 2009; MacInnis et al., 

2018). Of participants who started the survey, 79.9% went on to complete it. Further information 

about data collection and preliminary frequency information can be found in Silva et al. (2017; 

2018; 2019). 

At the beginning of the survey, participants responded to a battery of demographic questions 

and then rated eight extreme weather hazards on a five-point scale (no, low, moderate, high, or 

extreme risk). The eight hazards—extreme heat, drought, extreme cold, snow/ice, tornados, 

flooding, hurricanes, and wildfires—were presented in a random order for each participant. The 

question wording was: “Thinking about all four seasons (winter, summer, spring, and fall), how 

do you rate the risk of the following extreme weather events to you and the people in your area?” 

Note that this wording is intentionally nebulous; it does not instruct survey respondents to think of 

a specific definition or dimension of risk when providing a judgement. It also suggests that 

participants consider all four seasons, so as to encourage participants to avoid using common 

cognitive shortcuts (e.g., recency bias, availability heuristic, affect heuristic). As a result, the 

measure likely reflects the wide variety of factors that may influence participant risk perceptions, 

ranging from perceptions of exposure (the probability of an event) and sensitivity (vulnerability to 

an event) to perceptions of severity, consequences, and resilience. This variety reflects the 
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subjective and heterogenous nature of risk perceptions, but it may complicate precise interpretation 

of the results. 

2.1.2. Validation Survey Data 

The data we use to validate the estimates come from an additional independent oversample of 

approximately 50 survey respondents that reside in a random set of 30 National Weather Service 

County Warning Areas (CWAs) across the US (n = 1,543). The same sampling methodology and 

survey questions were used to collect the estimation and validation data. 

2.2. Multilevel Regression and Poststratification (MRP) 

2.2.1. Methodology 

Following Howe et al. (2019), we use Multilevel Regression and Poststratification (MRP) to 

estimate the distribution of geographic risk perceptions in the Contiguous United States (CONUS). 

MRP is an increasingly common technique in survey research that uses national data to estimate 

preferences, perceptions, and behaviors in small geographic areas (Buttice & Highton, 2013; Lax 

& Phillips, 2009; Zhang et al., 2015). The technique is particularly robust for domains in which 

geography (location) impacts the variable of interest. We use County Warning Areas (CWAs) as 

the geographic unit of analysis because they define the zones for which each NWS Weather 

Forecast Office (WFO) is responsible for issuing forecasts and warnings. In the current analysis, 

we include data from the 115 CWAs in the CONUS. As the name suggests, MRP involves two 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2  The models were fit using the rstanarm package in R. See Goodrich et al., 2018 for details.         

3  As As a robustness check for the results, we additionally run the MRP without hazard exposure  

as a predictor and replicate the results (see Supporting Information Figs. A1–A4).  

194 steps—multilevel  regression and then poststratification. In step one, we  estimate  models  for each 

of the hazards2:  
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The  models  have  two levels. Individually, a  participant’s  risk perception score  for each hazard  

(�!) varies  as  a  function of the  participant’s  demographic  profile  (gender, age, a gender-age  

interaction, race, and ethnicity) and geographic  area  (CWA). CWA  effects  vary in relation to 

exposure.3  Following estimation, we  use  the  parameters  from  these  models  to predict  risk 

perceptions  for each demographic-geographic  combination. In all, the  models  provide  estimates  

for two gender groups  (male  and female), three  age  groups  (18 to 34, 35 to 59, and 60+), three  race  

groups  (white, black, other race), and two ethnicity groups  (non-Hispanic  and Hispanic), allowing 

us  to make  36 demographic  combinations  in 115 CWAs  across  the  country. For example, one  
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demographic-geographic  combination includes  participants  who are  female, age  18 to 34, white, 

non-Hispanic and reside in the New Orleans County Warning Area (CWA).     

In step two, we  use  poststratification to weight  the  predictions  (�) for  each demographic-

geographic  combination (r).  We  use  US  Census  data  to identify the  population frequency of each 

demographic-geographic  combination.  The  population estimates  were  obtained from  the  U.S. 

Census  Annual  Population Estimates  by Sex, Age, Race, and Hispanic  Origin (US  Census  Bureau, 

2018).  These  frequencies  (N) provide  the  weights  we  use  to produce  the  MRP  estimates  for each 

CWA:  

 

∑
�>?@ = *∈;<= �*�* 
;<=  Σ*B;<= 

 

This  methodology allows  us  to estimate  average  area  risk perceptions  within each CWA  for all  

eight hazards.   

 

2.2.2.  Exposure  

We  use  the  National  Center for Environmental  Information (NCEI) Storm  Events  Database  to 

measure  exposure  across  all  but  one  of the  hazards  (NOAA, 2019). Specifically, we  use  data  from  

the  last  22  years  (1996  - 2018)4  to calculate  the  mean  days  per year that  each CWA  experiences  a 

heat, cold, snow/ice, tornado, flood, hurricane, or wildfire  event  (See  Table  A1 for a  list  of the  

Storm  Event  types  that  we  associate  with each hazard). We  use  data  from  the  US  Drought  Monitor 

to produce  a  comparable  measure  for drought  (National  Drought  Mitigation Center, 2019).  While  

4 Data from the US Drought Monitor only includes data from the last 20 years (1998-2018). 
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these calculations may provide information about the probability of hazards in CWAs, they do not 

address the sensitivity or consequences, so we adopt the term exposure in place of objective risk 

in the sections that follow. 

3. RESULTS 

3.1. Geographic Distributions of Exposure 

The maps in Figure 1(a) plot exposure to weather and climate hazards by CWA. Most of the 

hazards exhibit a geographic pattern, but some of the patterns are more variable than others. For 

example, tornado events concentrate in the Midwest and Central Plains, cold temperature events 

are most common in the Upper Midwest, and drought events are more likely in the West. Wildfire, 

snow/ice, and flood events, by comparison, exhibit more geographic variation. 

[Figure 1] 

3.2. Geographic Distributions of Risk Perceptions 

The maps in Figure 1(b) show the MRP estimates of average risk perceptions by CWA across 

the hazards. Consistent with Figure 1(a), most of the estimates exhibit a geographic pattern, but 

some are more variable than others. Hurricane risk perceptions, for example, are highest along the 

Eastern and Southern coastlines, where hurricane exposure is the greatest. Flood risk perceptions, 

by comparison, are a bit more diffuse. 

3.3. Validating Estimates of Risk Perceptions 

We validate the estimates of risk perceptions in two ways. First, we compare the risk perception 

estimates to observations from the independent validation sample we describe above (Section 
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2.1.2). The panels in Figure 2(a) plot bivariate relationships between the risk perception 

observations from the independent validation survey data and the original MRP risk perception 

estimates. There are consistently strong positive relationships between the two variables, but the 

correlations vary across the hazards. Six of the eight correlations are 0.90 or above, while the 

remaining two are 0.71 (Floods) and 0.79 (Extreme heat waves). While relatively high, we are able 

to double check the validity of the heat risk perception estimates by comparing them to the 

estimates provided by Howe et al. (2019) which uses different survey measures and data. By 

aggregating county estimates5 from the previous Howe et al. (2019) study to CWAs and then 

comparing the previous estimates to the current estimates, Figure 2(b) plots the comparison of our 

heat risk data to Howe et al. (2019) heat data. As in Figure 2(a), the comparison reveals a strong 

positive correlation between the measures (r = 0.75). In combination, these comparisons 

corroborate the validity of the MRP risk perception estimates. 

[Figure 2] 

3.4. Comparing Risk of Hazard Exposure to Risk Perceptions 

Do risk perceptions align with exposure or do perceptions misalign in ways that may 

complicate risk communication? The panels in Figure 3(a) address this question by plotting the 

bivariate relationships between risk perception estimates and exposure. There are strong 

relationships between risk perceptions and exposure to tornado, hurricane, and drought events; a 

moderate relationship between perception and exposure to snow/ice, wildfire, and extreme cold 

5 We weight the county estimates by population during the aggregation process. 



      

          

        

  

           

       

         

          

          

        

          

           

           

             

           

            

         

    

         

     

        

      

        

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

events; and a fairly weak relationship between perceptions of risk and exposure to flood and heat 

events. The moderate and weak correlations suggest possible misalignments that may complicate 

communication and possibly jeopardize resilience in CWAs where risk perceptions are 

significantly lower (or higher) than we might expect based on exposure. 

Figure 3(b) illustrates this point by plotting the five communities with the largest residuals 

(i.e., differences between risk perception estimates and exposure estimates) when modeling risk 

perceptions as a function of exposure to flood and heat events. Estimates suggest, for example, 

that residents of the Houston/Galveston, TX and New Orleans, LA CWAs perceive more flood 

risk than exposure suggests; the opposite is true in the San Diego, CA and Albuquerque, NM 

CWAs, where residents perceive less risk than exposure suggests. Similarly, estimates for Phoenix 

and Tucson, AZ suggest that residents perceive more heat risk than exposure suggests. One 

potential explanation for these results is the presence of unique disaster subcultures in these areas 

(Engel et al., 2014); for example, areas in Arizona such as Phoenix and Tucson may have a culture 

that is highly attentive to heat as a result of their average high heat, relative to other parts of the 

US, even if events that are considered extreme relative to this area may not be common. More 

exploration is necessary, but our results may also reflect a few well-known characteristics of risk 

perceptions: (1) that communities (in aggregate) weight event severity (consequences) more 

heavily than frequency (probability) when judging risk (i.e., probability neglect; Sunstein, 2001); 

and/or (2) that communities draw on recent or especially salient events when judging risk (i.e., 

availability heuristic; Tversky and Kahneman, 1973). Demuth’s (2018) careful conceptualization 

of tornado experience may also help explain these residuals; specifically, she finds most measures 

of memorable experience and multiple experiences are positively associated with risk perceptions, 

but not all. For example, the 2017 Hurricane Harvey event in Houston/Galveston, TX, was a high 
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consequence case that likely amplified residents’ risk perceptions, even though the community’s 

exposure is relatively modest in comparison to county warning areas that experience many floods 

of lower consequence. 

[Figure 3] 

4. CONCLUSIONS 

The current study presents maps of natural hazard exposure and subjective risk perceptions 

across geographic regions of the Contiguous United States (CONUS). While many previous 

studies on exposure and perception have focused on very fine-grained differences in narrow 

geographic regions (e.g., cities and counties versus across the CONUS), the present study aims to 

provide more holistic evidence of varying risk perceptions across geographic regions. 

For the first time, the current research demonstrates that concerns about natural hazards vary 

systematically across the country. Moreover, these risk perceptions generally align with objective 

indicators of exposure. Importantly, though potentially due to differences in measurement or 

measurement error, some risk perceptions correlate more strongly with exposure. Namely, while 

the perception-exposure relationship for hurricanes, tornadoes, and drought are strong (all 

correlations greater than 0.80), the perception-exposure relationship for flooding and heat are not 

as robust. One reason for the smaller perception-exposure correlations may be that individuals 

across the US are unaware of their exposure and therefore more at risk to making maladaptive 

decisions. Another may be that our measures of exposure to flooding and extreme heat risk are 

especially imprecise. For example, in areas such as Phoenix or Tucson, our models suggest risk 

perceptions are much higher than our exposure measure would predict. This could be due (at least 
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345

partially) to threshold differences in the definition of an “event” or differences in reporting 

practices across NWS offices. Additionally, this measure of exposure does not account for 

respondents’ higher levels of absolute heat exposure to which they may be calibrating their risk 

perceptions. Regardless, these results suggest that research into improving risk communication 

products for heat/floods may be more fruitful, than for other better understood hazards. 

The geographic maps we present can help inform forecasters and broadcast meteorologists 

who are interested in effectively communicating risks to their respective communities. 

Furthermore, CWAs where individuals believe they are safe from heat waves, but actually face 

significant exposure might particularly benefit from educational or informational interventions. 

Having a standardized method to measure risk perceptions across time and space will support 

research interested in tracking the effectiveness of changes before and after interventions. 

Implications asside, we recognize there are significant limitations to this study that may 

provide opportunities for future research. First and foremost, we use exposure as a rough proxy 

for objective risk. Previous research (including evidence from this study), suggests that people 

evaluate both event frequency (probability) and severity (consequences) when formulating 

perceptions of risk (Weinstein et al., 2000). However, the subjective risk perception prompt was 

relatively vague, asking simply, “…how do you rate the risk of the following extreme weather 

events to you and the people in your area?” This wording leaves it up to the participant to decide 

the extent to which they weigh the occurrence of the event in their area, and the potential impact 

of a hazard. It is therefore important that future work attempt to capture both frequency and 

severity when measuring objective and subjective risk. Data limitations will likely complicate this 

task. Furthermore, because the present study does not explicitly unpack what participants’ 

judgments of risk are based on (e.g., consequences, frequency, recency), the current study is unable 
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to provide holistic prescriptions on how communicators may improve risk communications or 

education materials. 

Here, we use the Storm Events Database to measure exposure. Inconsistencies in reporting 

across space, time, and event type can make it difficult to reliably measure event frequency. These 

inconsistencies are even more apparent in attempts to measure event severity (e.g., fatalities, 

injuries, property and crop losses). More specifically, data from the Storm Events Database are 

aggregated from a variety of sources, including news stories and observer reports. Definitions of 

what counts as an “event” may vary, systematically or randomly, from one place to another, which 

likely impacts our measures of exposure. This limitation in the data may lead to cases where risk 

perceptions appear misaligned with the measure of exposure. Nonetheless, we expect that 

including information like this, if reliable, will improve (i) estimates of objective risk, (ii) MRP 

estimates of subjective risk perceptions (that partially rely on estimates of objective risk), and (iii) 

comparisons between the two. 

While previous research on risk perceptions and risk communication has focused on averages 

(i.e., the notion that standard risk communication methods will work for all people), this research 

suggests that geographic location and experience with hazards might be important individual 

differences that influence risk perceptions. Given the relationship between risk perceptions, 

decision making and protective behavior, the present research suggests that some CWAs may be 

more vulnerable to uninformed decision making when responding to or preparing for natural 

hazards. While this paper cannot connect immediately the relationship between risk perceptions 

and protective behaviors, understanding the distribution of extreme weather and hazard risk 

perceptions can provide a basis for measuring response and protective action. Moreover, as 

precision for mapping differences in risk perceptions and objective risks increases, having a 
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framework for conducting more holistic risk perception analyses will support future research on 

individual differences. 

The current research also supports scientists (i.e., meteorologists, forecasters, emergency 

managers, and related social scientists) who are interested in effective methods for risk 

communication. Effective risk communication requires systematic, robust, and intimate 

knowledge of the community. This knowledge can be difficult and time consuming to obtain, 

and hard to pass on to employees who are transplants in the communities they serve. Tracking 

these constructs will provide systematic and reliable data across geographic areas in the US, which 

will support employees tasked with risk communication. In addition, it provides a method to track 

changes in skills and abilities over time, especially after implementing educational interventions, 

which will support the assessment of the effectiveness of new policies or decision support systems. 

Taken together, these methods provide the ability to better inform stakeholders and the public of 

risks and uncertainties, ultimately supporting resilient decision making. 
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534 FIGURES  

535 

536 Figure 1: Mapping (a) exposure to and (b) risk perceptions from weather and climate  

hazards by CWA.   537 



  

 

 

538 

539 Figure 2: Comparison of risk perception estimates to (a) independent survey data and (b)   

previous study estimates for heat risk perceptions.    540 



  

 

 

541 

542 Figure 3: Comparison of (a) risk perception estimates to exposure to (b) identify possible  

perception-exposure misalignments.   543 



   

 Category 
 

 Corresponding Event Types in the NCEI 
 Storm Events Database and the US 

  Drought Monitor Database 
 Extreme heat waves  Excessive Heat 

 Heat 
 Extreme cold temperatures  Cold/Wind Chill 

 Extreme Cold/Wind Chill 
 Extreme snow (or ice) storms  Blizzard 

 Heavy Snow 
 High Snow 

 Ice Storm 
 Lake-Effect Snow 

 Winter Storm 
 Winter Weather 

 Tornadoes  Tornado 
 Floods  Coastal Flood 

 Flash Flood 
 Flood 

 Lakeshore Flood 
 Surge/Tide 

 Hurricanes  Hurricane, Hurricane (Typhoon) 
 Marine Hurricane/Typhoon 
 Marine Tropical Depression 

 Marine Tropical Storm 
 Tropical Depression 

 Tropical Storm 
 Wildfires  Wildfire 

 Drought   D1 (Moderate Drought) 
  D2 (Severe Drought) 
  D3 (Extreme Drought) 
  D4 (Exceptional Drought) 

 

 

544 Supporting Information 

545 Table A1: The storm event types from the NOAA NCEI Storm Events Database and the      

US Drought Monitor that we associate with each category of hazard.     546 



  

 

547 

548 Figure A1. Comparison of MRP with and without exposure variable as predictor.  



  

  

549 

550 Figure A2. Replication of Figure 1 without Exposure variable as predictor.  



  

  

551 

552 Figure A3. Replication of Figure 2 without Exposure variable as predictor.  



  

 

553 

554 Figure A4. Replication of Figure 3 without Exposure variable as predictor.  
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